MySQL 索引

1. 介绍

1.1 存储引擎

什么是存储引擎

  与其他数据库例如Oracle 和SQL Server等数据库中只有一种存储引擎不同的是,MySQL有一个被称为“Pluggable Storage Engine Architecture”(可替换存储引擎架构)的特性,也就意味着MySQL数据库提供了多种存储引擎。用户可以根据不同的需求为数据表选择不同的存储引擎,用户也可以根据自己的需要编写自己的存储引擎。MySQL数据库在实际的工作中其实分为了语句分析层和存储引擎层,其中语句分析层就主要负责与客户端完成连接并且事先分析出SQL语句的内容和功能,而存储引擎层则主要负责接收来自语句分析层的分析结果,完成相应的数据输入输出和文件操作。简而言之,就是如何存储数据、如何为存储的数据建立索引和如何更新、查询数据等技术的实现方法。因为在关系数据库中数据的存储是以表的形式存储的,所以存储引擎也可以称为表类型(即存储和操作此表的类型)。

存储引擎种类

存储引擎 说明
MyISAM 高速引擎,拥有较高的插入,查询速度,但不支持事务
InnoDB 5.5版本后MySQL的默认数据库,支持事务和行级锁定,比MyISAM处理速度稍慢
ISAM MyISAM的前身,MySQL5.0以后不再默认安装
MRG_MyISAM(MERGE) 将多个表联合成一个表使用,在超大规模数据存储时很有用
Memory 内存存储引擎,拥有极高的插入,更新和查询效率。但是会占用和数据量成正比的内存空间。只在内存上保存数据,意味着数据可能会丢失
Falcon 一种新的存储引擎,支持事物处理,传言可能是InnoDB的替代者
Archive 将数据压缩后进行存储,非常适合存储大量的独立的,作为历史记录的数据,但是只能进行插入和查询操作
CSV CSV 存储引擎是基于 CSV 格式文件存储数据(应用于跨平台的数据交换)

接下来我们就介绍两种在实际开发中使用最多的两种引擎【MyISAM】和【InnoDB】

1.2 MyISAM 引擎

  • 这种引擎是MySQL最早提供的。这种引擎又可以分为静态MyISAM、动态MyISAM 和压缩MyISAM三种:
  • 静态MyISAM:如果数据表中的各数据列的长度都是预先固定好的,服务器将自动选择这种表类型。因为 数据表中每一条记录所占用的空间都是一样的,所以这种表存取和更新的效率非常高。当数据受损时,恢复工作也比较容易做。
  • 动态MyISAM:如果数据表中出现varchar、xxxtext或xxxBLOB字段时,服务器将自动选择这种表类型。相对于静态MyISAM,这种表存储空间比较小,但由于每条记录的长度不一,所以多次修改数据后,数据表中的数据就可能离散的存储在内存中,进而导致执行效率下降。同时,内存中也可能会出现很多碎片。因此,这种类型的表要经常用optimize table 命令或优化工具来进行碎片整理。
  • 压缩MyISAM:以上说到的两种类型的表都可以用myisamchk工具压缩。这种类型的表进一步减小了占用的存储,但是这种表压缩之后不能再被修改。另外,因为是压缩数据,所以这种表在读取的时候要先时行解压缩。
  • 当然不管是何种MyISAM表,目前它都不支持事务,行级锁和外键约束的功能,这就意味着有事务处理需求的表,不能使用MyISAM存储引擎。MyISAM存储引擎特别适合在以下几种情况下使用:
  • 选择密集型的表。MyISAM存储引擎在筛选大量数据时非常迅速,这是它最突出的优点。
  • 插入密集型的表。MyISAM的并发插入特性允许同时选择和插入数据。

  MyISAM表是独立于操作系统的,这说明可以轻松地将其从Windows服务器移植到Linux服务器;每当我们建立一个MyISAM引擎的表时,就会在本地磁盘上建立三个文件,文件名就是表名。 例如我创建了一个【test】表,那么就会生成以下三个文件:

文件名 说明
test.frm 存储表定义
test.MYD 存储数据
test.MYI 存储索引

1.3 InnoDB引擎

  InnoDB表类型可以看作是对MyISAM的进一步更新产品,它提供了事务、行级锁机制和外键约束的功能。InnoDB的表需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引。 使用InnoDB是最理想的选择:

  • 更新密集的表:InnoDB存储引擎特别适合处理多重并发的更新请求
  • 事务:InnoDB存储引擎是支持事务的标准MySQL存储引擎
  • 自动灾难恢复:与其它存储引擎不同,InnoDB表能够自动从灾难中恢复
  • 外键约束:MySQL支持外键的存储引擎只有InnoDB
  • 支持自动增加列AUTO_INCREMENT属性

1.4 引擎对比

InnoDB 支持事务处理,支持外键,支持崩溃修复能力和并发控制。如果需要对事务的完整性要求比较高(比如银行),要求实现并发控制(比如售票),那选择InnoDB有很大的优势。如果需要频繁的更新、删除操作的数据库,也可以选择InnoDB,因为支持事务的提交(commit)和回滚(rollback)。

MyISAM 插入数据快,空间和内存使用比较低。如果表主要是用于插入新记录和读出记录,那么选择MyISAM能实现处理高效率。如果应用的完整性、并发性要求比较低,也可以使用。

注意 同一个数据库也可以使用多种存储引擎的表。如果一个表要求比较高的事务处理,可以选择InnoDB。这个数据库中可以将查询要求比较高的表选择MyISAM存储。如果该数据库需要一个用于查询的临时表,可以选择MEMORY存储引擎。

2. 索引

2.1 索引介绍

为何要有索引

  一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。

什么是索引

  索引在MySQL中也叫做“键”或者"key"(primary key,unique key,还有一个index key),是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要,减少io次数,加速查询。(其中primary key和unique key,除了有加速查询的效果之外,还有约束的效果,primary key 不为空且唯一,unique key 唯一,而index key只有加速查询的效果,没有约束效果) ​ 索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。 ​ 索引相当于字典的音序表,如果要查某个字,如果不使用音序表,则需要从几百页中逐页去查。

​ 强调:一旦为表创建了索引,以后的查询最好先查索引,再根据索引定位的结果去找数据

  索引是应用程序设计和开发的一个重要方面。若索引太多,应用程序的性能可能会受到影响。而索引太少,对查询性能又会产生影响,要找到一个平衡点,这对应用程序的性能至关重要。一些开发人员总是在事后才想起添加索引----我一直认为,这源于一种错误的开发模式。如果知道数据的使用,从一开始就应该在需要处添加索引。开发人员往往对数据库的使用停留在应用的层面,比如编写SQL语句、存储过程之类,他们甚至可能不知道索引的存在,或认为事后让相关DBA加上即可。DBA往往不够了解业务的数据流,而添加索引需要通过监控大量的SQL语句进而从中找到问题,这个步骤所需的时间肯定是远大于初始添加索引所需的时间,并且可能会遗漏一部分的索引。当然索引也并不是越多越好,我曾经遇到过这样一个问题:某台MySQL服务器iostat显示磁盘使用率一直处于100%,经过分析后发现是由于开发人员添加了太多的索引,在删除一些不必要的索引之后,磁盘使用率马上下降为20%。可见索引的添加也是非常有技术含量的。

在mysql中常用两种索引结构(算法)BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。

存储引擎 显示支持索引结构
InnoDB BTREE
MyISAM BTREE
MEMORY/HEAP HASH,BTREE
NDB HASH, BTREE (see note in text)

mysql InnoDB存储引擎 是支持hash索引的,不过,我们必须启用,hash索引的创建由InnoDB存储引擎引擎自动优化创建,我们干预不了。

2.2 索引的原理

  索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等,下面内容看不懂的同学也没关系,能明白这个目录的道理就行了。 那么你想,书的目录占不占页数,这个页是不是也要存到硬盘里面,也占用硬盘空间。你再想,你在没有数据的情况下先建索引或者说目录快,还是已经存在好多的数据了,然后再去建索引,哪个快,肯定是没有数据的时候快,因为如果已经有了很多数据了,你再去根据这些数据建索引,是不是要将数据全部遍历一遍,然后根据数据建立索引。你再想,索引建立好之后再添加数据快,还是没有索引的时候添加数据快,索引是用来干什么的,是用来加速查询的,那对你写入数据会有什么影响,肯定是慢一些了,因为你但凡加入一些新的数据,都需要把索引或者说书的目录重新做一个,所以索引虽然会加快查询,但是会降低写入的效率。  

2.3 索引的影响

  • 在表中有大量数据的前提下,创建索引速度会很慢
  • 在索引创建完毕后,对表的查询性能会发幅度提升,但是写性能会降低

  本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

  数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

2.4 索引分类

  • 从存储结构上来划分:BTree索引(B-Tree或B+Tree索引),Hash索引,full-index全文索引,R-Tree索引。
  • 从应用层次来分:普通索引,唯一索引,复合索引
  • 根据中数据的物理顺序与键值的逻辑(索引)顺序关系:聚集索引,非聚集索引。

普通索引 即一个索引只包含单个列,一个表可以有多个单列索引

唯一索引 索引列的值必须唯一,但允许有空值

复合索引 即一个索引包含多个列

聚簇索引(聚集索引) 并不是一种单独的索引类型,而是一种数据存储方式。具体细节取决于不同的实现,InnoDB的聚簇索引其实就是在同一个结构中保存了B-Tree索引(技术上来说是B+Tree)和数据行。

2.5 磁盘IO与预读

  前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转/min,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms,也就是半圈的时间(这里有两个时间:平均寻道时间,受限于目前的物理水平,大概是5ms的时间,找到磁道了,还需要找到你数据存在的那个点,寻点时间,这寻点时间的一个平均值就是半圈的时间,这个半圈时间叫做平均延迟时间,那么平均延迟时间加上平均寻道时间就是你找到一个数据所消耗的平均时间,大概9ms,其实机械硬盘慢主要是慢在这两个时间上了,当找到数据然后把数据拷贝到内存的时间是非常短暂的,和光速差不多了);传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的消耗的时间段下cpu可以执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难,所以我们要想办法降低IO次数。

  考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

3. 索引的数据结构

3.1 索引数据介绍

  前面讲了索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,现在我们来看看索引怎么做到减少IO,加速查询的。任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生(B+树是通过二叉查找树,再由平衡二叉树,B树演化而来)。

mysql index

  如上图,是一颗b+树,最上层是树根,中间的是树枝,最下面是叶子节点,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块或者叫做一个block块,这是操作系统一次IO往内存中读的内容,一个块对应四个扇区,可以看到每个磁盘块包含几个数据项(深蓝色所示,一个磁盘块里面包含多少数据,一个深蓝色的块表示一个数据,其实不是数据,后面有解释)和指针(黄色所示,看最上面一个,p1表示比上面深蓝色的那个17小的数据的位置在哪,看它指针指向的左边那个块,里面的数据都比17小,p2指向的是比17大比35小的磁盘块),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

3.2 B+书查找过程

  如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。除了叶子节点,其他的树根啊树枝啊保存的就是数据的索引,他们是为你建立这种数据之间的关系而存在的。

3.3 B+树性质

索引字段要尽量的小

  通过上面的分析,我们知道IO次数取决于b+数的高度h或者说层级,这个高度或者层级就是你每次查询数据的IO次数,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。

mysql index

索引的最左匹配特性

  简单来说就是你的数据来了以后,从数据块的左边开始匹配,在匹配右边的。当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

3.4 B树

B树特点:

  • 所有键值分布在整颗树中
  • 搜索有可能在非叶子结点结束,在关键字全集内做一次查找,性能逼近二分查找
  • 每个节点最多拥有m个子树
  • 根节点至少有2个子树
  • 分支节点至少拥有m/2颗子树(除根节点和叶子节点外都是分支节点)
  • 所有叶子节点都在同一层、每个节点最多可以有m-1个key,并且以升序排列

mysql index

实例图说明:

每个节点占用一个磁盘块,一个节点上有两个升序排序的关键字和三个指向子树根节点的指针,指针存储的是子节点所在磁盘块的地址。两个关键词划分成的三个范围域对应三个指针指向的子树的数据的范围域。以根节点为例,关键字为16和34,P1指针指向的子树的数据范围为小于16,P2指针指向的子树的数据范围为16~34,P3 指针指向的子树的数据范围为大于 34。 查找关键字过程:

  • 根据根节点找到磁盘块 1,读入内存。【磁盘 I/O 操作第 1 次】
  • 比较关键字 28 在区间(16,34),找到磁盘块 1 的指针 P2。
  • 根据 P2 指针找到磁盘块 3,读入内存。【磁盘 I/O 操作第 2 次】
  • 比较关键字 28 在区间(25,31),找到磁盘块 3 的指针 P2。
  • 根据 P2 指针找到磁盘块 8,读入内存。【磁盘 I/O 操作第 3 次】
  • 在磁盘块 8 中的关键字列表中找到关键字 28。

缺点:

  • 每个节点都有key,同时也包含data,而每个页存储空间是有限的,如果data比较大的话会导致每个节点存储的key数量变小
  • 当存储的数据量很大的时候会导致深度较大,增大查询时磁盘io次数,进而影响查询性能

3.4 索引数据结构--B+Tree

B+Tree是在BTree的基础之上做的一种优化,变化如下:

  • B+Tree每个节点可以包含更多的节点,这个做的原因有两个,第一个原因是为了降低树的高度,第二个原因是将数据范围变为多个区间,区间越多,数据检索越快
  • 非叶子节点存储key,叶子节点存储key和数据
  • 叶子节点两两指针相互连接(符合磁盘的预读特性),顺序查询性能更高

mysql index

注意

在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,
而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree,
进行两种查找运算:一种是对于主键的范围查找和分页查找,
另一种是从根节点开始,进行随机查找。

3.5 InnoDB--B+Tree

innodb引擎的mysql,叶子节点直接放置数据,而myisam引擎的mysql,叶子节点是不放数据的。

mysql index

注意

1、InnoDB是通过B+Tree结构对主键创建索引,然后叶子节点中存储记录,
   如果没有主键,那么会选择唯一键,如果没有唯一键,那么会生成一个6位的row_id来作为主键

2、如果创建索引的键是其他字段,那么在叶子节点中存储的是该记录的主键,
    然后再通过主键索引找到对应的记录,叫做回表

3.6 MyISAM--B+Tree

mysql index

3.7 问题

Q:为什么索引结构默认使用B-Tree,而不是hash,二叉树,红黑树?

  • hash:虽然可以快速定位,但是没有顺序,IO复杂度高。
  • 二叉树:树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。
  • 红黑树:树的高度随着数据量增加而增加,IO代价高。

mysql index

Q:为什么官方建议使用自增长主键作为索引。

结合B+Tree的特点,自增主键是连续的,在插入过程中尽量减少页分裂,即使要进行页分裂,也只会分裂很少一部分。并且能减少数据的移动,每次插入都是插入到最后。总之就是减少分裂和移动的频率。

插入连续的数据

mysql index

插入非连续的数据

mysql index

4. 聚集索引与辅助索引

4.1 聚集索引

  聚集索引是什么呢,其实就是我们说的那个主键,之前我们说Innodb存储引擎的表,必须有一个主键

  还记得MyISAM存储引擎在创建表的时候会在硬盘上生成哪些文件吗,是不是有三个.frm.MYD.MYI结尾的三个文件,frm结尾的是表结构,MYD结尾的是数据文件,MYI结尾的就是索引文件,也就是说索引也是存在硬盘上的,那InnoDB引擎呢,创建一个表,在硬盘上会生成.frm.idb结尾的两个文件,那索引的呢,难道InnoDB就用不了索引吗?怎么可能?之前咱们有没有建立过索引啊,primary key、unique key是不是都叫做索引啊,但是索引那个文件去哪了呢,索引是不可能在表结构.frm(存什么字段什么类型这些东西)的文件中,那就只剩下.idb结尾的数据文件了,索引就在这里面,InnoDB引擎的表,它的索引和数据都在同一个文件里面,所以我一直强调,使用InnoDB存储引擎的时候,每建一个表,就需要给一个主键,是因为这个主键是InnoDB存储引擎的.idb文件来组织存储数据的依据或者说方式,也就是说InnoDB存储引擎在存储数据的时候默认就按照索引的那种树形结构来帮你存。这种索引,我们就称为聚集索引,也就是在聚集数据组织数据的时候,就用这种索引。InnoDB这么做就是为了加速查询效率,因为你经常会遇到基于主键来查询数据的情况,并且通常我们把id字段作为主键,第一点是因为id占用的数据空间不大,第二点是你经常会用到id来查数据。如果你的表有两个字段,一个id一个name,id为主键,当你查询的时候如果where后面的条件是name=多少多少,那么你就没有用到主键给你带来的加速查询的效果(需要主键之外的辅助索引),如果你用where id=多少多少,就会按照我们刚才上面说的哪种树形结构来给你找寻数据了(当然不仅仅有这种树形结构的数据结构类型),能够快速的帮你定位到数据块。这种聚集索引的特点是它会以id字段作为依据,去建立树形结构,但是叶子节点存的是你表中的一条完整记录,一条完整的数据。记住这一点昂,一会将辅助索引的时候,和这个内容有关系,会讲到一个回表的概念。

  在数据库中,B+树的高度一般都在24层,这也就是说查找某一个键值的行记录时最多只需要2到4次IO,这倒不错。因为当前一般的机械硬盘每秒至少可以做100次IO,24次的IO意味着查询时间只需要0.02~0.04秒。

  数据库中的B+树索引可以分为聚集索引(clustered index)和辅助索引(secondary index),

  聚集索引与辅助索引相同的是:不管是聚集索引还是辅助索引,其内部都是B+树的形式,即高度是平衡的,叶子结点存放着所有的数据。

  聚集索引与辅助索引不同的是:叶子结点存放的是否是一整行的信息

聚集索引的好处之一,它对主键的排序查找和范围查找速度非常快,叶子节点的数据就是用户所要查询的数据。如用户需要查找一张表,查询最后的10位用户信息,由于B+树索引是双向链表,所以用户可以快速找到最后一个数据页,并取出10条记录  


回表 覆盖索引 最左前缀[联合索引] 索引下推

redo log 存储引擎这边 innodb固有的 物理日志 循环写 undo log 存储引擎这边 innodb固有的

binlog server这边 逻辑日志 追加写